class Example {
Map<Integer, List<int[]>> G; // G is a mapping of sourceVertex: [targetVertex, weight]
void dijkstra(int source, int target) {
// PQ with [targetVertex, weight]. Sorted by weights in non-decreasing order
PriorityQueue<int[]> minHeap = new PriorityQueue<>((a, b) -> a[1] - b[1]);
minHeap.add(new int[] {source, 0});
int[] minDist = new int[G.size()];
Arrays.fill(minDist, Integer.MAX_VALUE); // Fill with maxiumum value
minDist[source] = 0;
while (minHeap.isEmpty()) {
int cur = minHeap.remove()[0];
if (!G.containsKey(cur)) continue; // No edges
for (int[] nextEdge : G.get(cur)) {
int nextVertex = nextEdge[0], nextWeight = nextEdge[1];
if (minDist[nextVertex] > minDist[cur] + nextWeight) {
minDist[nextVertex] = minDist[cur] + nextWeight;
minHeap.add(new int[] {nextVertex, minDist[nextVertex]});
}
}
}
}
}
Time: O(ElogV)
Space: O(V)
Works only with non-negative weights.
Bellman-Ford
class Example {
List<int[]> edges; // edges is a list of: [source, target, weight]
int bellmanFord(int source, int target, int size) {
// Size is the number of vertices
int[] prev = new int[size], cur = new int[size];
Arrays.fill(prev, Integer.MAX_VALUE);
Arrays.fill(cur, Integer.MAX_VALUE);
prev[source] = 0;
for (int i = 0; i < size; i++) { // V passes
cur[source] = 0;
for (int[] edge : edges) {
int src = edge[0], tar = edge[1], weight = edge[2];
if (cur[src] != Integer.MAX_VALUE && prev[src] + weight < cur[tar]) {
cur[tar] = prev[src] + weight;
}
}
prev = cur.clone();
}
return cur[target] == Integer.MAX_VALUE ? -1 : cur[target]; // Shortest dist: (source -> target)
}
}
Time: O(EV)
Space: O(V)
Can also work with negative weights but cannot work with negative cycles.
While Dijkstra uses a Priority Queue to greedily select the closest non-processed vertex, bellman-ford simply relaxes all edges leaving any vertex in any order.
Bellman-Ford with Queue (Shortest Faster Path Algorithm)
class Example {
Map<Integer, List<int[]>> G; // source: list of [target, weight]
int spfa(int source, int target) {
int[] dist = new int[G.size()];
boolean[] inQueue = new boolean[G.size()];
Arrays.fill(dist, Integer.MAX_VALUE);
dist[source] = 0;
Queue<Integer> queue = new LinkedList<>();
queue.add(source);
inQueue[source] = true;
while (!queue.isEmpty()) {
int v = queue.remove();
inQueue[v] = false;
if (!G.containsKey(v)) continue; // No edges
for (int[] edge : G.get(v)) {
int w = edge[1], weight = edge[2];
if (dist[w] > dist[v] + weight) {
dist[w] = dist[v] + weight;
if (!inQueue[w]) queue.add(w);
inQueue[w] = true;
}
}
}
return dist[target] == Integer.MAX_VALUE ? -1 : dist[target];
}
}
Time: O(EV)
Space: O(V)
Cannot be used to calculate the shortest path for at most k passes.